Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let a be an integer such that displaystyle lim x arrow 7 (18-[1-x]/[x-3 a]) exists, where [t] is greatest integer ≤ t. Then a is equal to
Q. Let a be an integer such that
x
→
7
lim
[
x
−
3
a
]
18
−
[
1
−
x
]
exists, where
[
t
]
is greatest integer
≤
t
. Then a is equal to
335
148
Report Error
A
-6
B
-2
C
2
D
6
Solution:
x
→
7
lim
[
x
−
3
a
]
18
−
[
1
−
x
]
exist and
a
∈
I
=
x
→
7
lim
[
x
]
−
3
a
17
−
[
−
x
]
exist
RHL
=
x
→
7
+
lim
[
x
]
−
3
a
17
−
[
−
x
]
=
7
−
3
a
25
[
a
=
3
7
]
L
H
L
=
x
→
7
−
lim
[
x
]
−
3
a
17
−
[
−
x
]
=
6
−
3
a
24
[
a
=
2
]
For limit to exist
LHL
=
RHL
7
−
3
a
25
=
6
−
3
a
24
⇒
7
−
3
a
25
=
2
−
a
8
∴
a
=
−
6