Q.
Let A be a symmetric matrix of order 2 with integer entries. If the sum of the diagonal elements of A2 is 1, then the possible number of such matrices is
A=(abbc),a,b,c∈I A2=(abbc)(abbc)=(a2+b2b(a+c)b(a+c)b2+c2)
Sum of the diagonal entries of A2=a2+2b2+c2
Given a2+2b2+c2=1,a,b,c∈I b=0 & a2+c2=1 Case-1 : a=0⇒c=±1 (2-matrices) Case-2 :c=0⇒a=±1 (2-matrices)
Total =4 matrices