Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let A be a n × n matrix such that | A |=2. If the determinant of the matrix textAdj(2 ⋅ textAdj(2 A -1)) ⋅ is 284, then n is equal to
Q. Let A be a
n
×
n
matrix such that
∣
A
∣
=
2
. If the determinant of the matrix
Adj
(
2
⋅
Adj
(
2
A
−
1
)
)
⋅
is
2
84
, then
n
is equal to ____
1462
131
JEE Main
JEE Main 2023
Determinants
Report Error
Answer:
5
Solution:
∣
∣
Adj
(
2
Adj
(
2
A
−
1
)
)
∣
∣
=
∣
∣
2
Adj
(
Adj
(
2
A
−
1
)
)
∣
∣
n
−
1
=
2
n
(
n
−
1
)
∣
∣
Adj
(
2
A
−
1
)
∣
∣
n
−
1
=
2
n
(
n
−
1
)
∣
∣
(
2
A
−
1
)
∣
∣
(
n
−
1
)
(
n
−
1
)
=
2
n
(
n
−
1
)
2
n
(
n
−
1
)
(
n
−
1
)
∣
∣
A
−
1
∣
∣
(
n
−
1
)
(
n
−
1
)
=
2
n
(
n
−
1
)
+
n
(
n
−
1
)
(
n
−
1
)
∣
A
∣
(
n
−
1
)
2
1
=
2
(
n
−
1
)
2
2
n
(
n
−
1
)
+
n
(
n
−
1
)
(
n
−
1
)
=
2
n
(
n
−
1
)
+
n
(
n
+
1
)
2
−
(
n
−
1
)
2
=
2
(
n
−
1
)
(
n
2
−
n
+
1
)
Now
2
(
n
−
1
)
(
n
2
−
n
+
1
)
2
(
n
−
1
)
(
n
2
−
n
+
1
)
=
2
84
So,
n
=
5