Q.
Let A be a3×3 matrix given by A=(aij)3×3. If for every column vector X satisfies X′AX=0 and a12=2008,a13= 1010 and a23=−2012. Then the value of a21+a31+a32=
Let X=⎣⎡x1x2x3⎦⎤,(x1x2x3)(⎝⎛a11a21a31a12a22a32a13a23a33⎠⎞⎝⎛x1x2x3⎠⎞=0 a11x12+a22x22+a33x32+(a12+a21)x1x2+(a13+a31)x1x3 +(a23+a32)x2x3=0
It is true for every x1,x2,x3,
then a11=a22=a33=0,a12+a21=0,a13+a31=0,a23+a32=0 ∴A is a skew symmetric matrix a21=−2008 a31=−2010 a32=2012