Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let a , b , x , y and θ are real satisfy a sin θ+b cos θ i=x+i y and b sin θ+a cos θ i=y+i x where i=√-1, then the value of (a2+b2) is equal to
Q. Let
a
,
b
,
x
,
y
and
θ
are real satisfy
a
sin
θ
+
b
cos
θ
i
=
x
+
i
y
and
b
sin
θ
+
a
cos
θ
i
=
y
+
i
x
where
i
=
−
1
, then the value of
(
a
2
+
b
2
)
is equal to
95
150
Report Error
A
2
x
2
+
2
y
2
B
2
(
x
2
+
y
2
)
C
x
2
+
y
2
D
2
(
x
+
y
)
Solution:
Equating real and imaginary parts
a
sin
θ
=
x
and
b
cos
θ
=
y
Also,
a
cos
θ
=
x
and
b
sin
θ
=
y
Square and add,
a
2
=
2
x
2
and
b
2
=
2
y
2