Q.
Let a,b∈R,(a=0). If the function f defined as f(x)=⎩⎨⎧a2x2ax32b2−4b,0≤x<1,1≤x<2,2≤x<∞
is continuous in the interval [0,∞), then an ordered pair (a,b) is :
f(x)=⎩⎨⎧a2x2ax32b2−4b0≤x<11≤x<22≤x<∞ ⇒ continuous at x=1 and x=2 x→Tlimf(x)=x→1+limf(x)=f(1) ⇒a2=a⇒a2=2,−−−−−(1)
and x→2limf(x)=x→2+limf(x)=f(2) ⇒a=222b2−4b ⇒b2−2b=2a
If a=2 then b2−2b−2=0 ⇒b=1±3
If a=−2 then b2−2b+2=0 ⇒b is imaginary which is not possible ⇒(a,b)=(2,1+3) or (2,1−3)