Q.
Let $a, b \in \ R, (a \neq 0)$. If the function f defined as
$
f(x) =
\begin{cases}
\frac{2x^2}{a} & , \quad 0 \leq x < 1\\
a &, \quad 1\leq x < \sqrt{2} \\ \frac{2b^2 - 4b}{x^3} & , \quad \sqrt{2} \leq x < \infty
\end{cases}
$
is continuous in the interval $[0, \infty)$, then an ordered pair $(a, b)$ is :
Solution: