Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let a, b, c ∈ R be all non-zero and satisfy a3+b3+c3=2. If the matrix A = beginpmatrixa&b&c b&c&a c&a&b endpmatrix satisfies A T A = I , then a value of abc can be
Q. Let
a
,
b
,
c
∈
R
be all non-zero and satisfy
a
3
+
b
3
+
c
3
=
2
. If the matrix
A
=
⎝
⎛
a
b
c
b
c
a
c
a
b
⎠
⎞
satisfies
A
T
A
=
I
,
then a value of
ab
c
can be
5955
194
JEE Main
JEE Main 2020
Matrices
Report Error
A
3
2
27%
B
−
3
1
21%
C
3
14%
D
3
1
38%
Solution:
A
T
A
=
I
⇒
a
2
+
b
2
+
c
2
=
1
and
ab
+
b
c
+
c
a
=
0
Now,
(
a
+
b
+
c
)
2
=
1
⇒
a
+
b
+
c
=
±
1
So
,
a
3
+
b
3
+
c
3
−
3
ab
c
=
(
a
+
b
+
c
)
(
a
2
+
b
2
+
c
2
−
ab
−
b
c
−
c
a
)
=
±
1
(
1
−
0
)
=
±
1
⇒
3
ab
c
=
2
±
1
=
3
,
1
⇒
ab
c
=
1
,
3
1