Q.
Let ABCD be a quadrilateral with area 18, side AB parallel to the side CD, and AB=2CD. Let AD be perpendicular to AB and CD. If a circle is drawn inside the quadrilateral ABCD touching all the sides, then its radius is
Given AB∣∣CD,CD=2AB.
Let AB=a. Then CD=2a.
Let the radius of the circle be r.
Let the circle touches AB at P,BC at Q,AD at R, and CD at S.
Then AR=AP=r,BP=BQ=a−r,DR=DS=r,
and CQ=CS=2a−r.
In △BEC, BC2=BE2+EC2 ⇒(a−r+2a−r)2=(2r)2+(a)2
or 9a2+4r2−12ar=4r2+a2
or a=23r ...(i)
Also, area (ABCD)=18sq. unit
or Area (ABED)+ Area (△BCE)=18sq. unit
or a×2r+21×a×2r=18
or ar=6 or 23r2=6 [Using Eq. (1)]
or r2=4 or r=2