Given, ax−cx2−bx=m+1m−1 ⇒(m+1)x2−b(m+1)x =a(m−1)x−c(m−1) ⇒(m+1)x2−(bm+b+am−a)x+c(m−1)=0 ⇒(m+1)x2−{(a+b)m+(b−a)}x+c(m−1)=0
Let the roots of the equation is (a,−a) .
Then sum of the roots =(m+1)(a+b)m+(b−a)α−α=(m+1)(a+b)m+(b−a)=0 ⇒(a+b)m−(a−b)=0 ⇒m=a+ba−b