Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let A, B, C be pairwise independent events with P(C)>0 and P(A ∩ B ∩ C)=0. Then, P(AC ∩ BC mid C) is equal to
Q. Let
A
,
B
,
C
be pairwise independent events with
P
(
C
)
>
0
and
P
(
A
∩
B
∩
C
)
=
0
. Then,
P
(
A
C
∩
B
C
∣
C
)
is equal to
503
168
Probability - Part 2
Report Error
A
P
(
A
C
)
−
P
(
B
)
B
P
(
A
)
−
P
(
B
C
)
C
P
(
A
C
)
+
P
(
B
C
)
D
P
(
A
C
)
−
P
(
B
C
)
Solution:
P
(
C
A
C
∩
B
C
)
=
P
(
C
)
P
(
A
C
∩
B
C
∩
C
)
=
P
(
C
)
P
(
C
)
−
P
(
A
∩
C
)
−
P
(
B
∩
C
)
+
P
(
A
∩
B
∩
C
)
...(i)
Given,
P
(
A
∩
B
∩
C
)
=
0
and
A
,
B
,
C
are pairwise
∴
P
(
A
∩
C
)
=
P
(
A
)
⋅
P
(
C
)
and
P
(
B
∩
C
)
−
P
(
B
)
⋅
P
(
C
)
∴
P
(
C
A
C
∩
B
C
)
=
P
(
C
)
P
(
C
)
−
P
(
A
)
⋅
P
(
C
)
−
P
(
B
)
⋅
P
(
C
)
+
0
[ from Eq.]
=
1
−
P
(
A
)
−
P
(
B
)
=
P
(
A
C
)
−
P
(
B
)