Let f′(x)=(1+cos8x)(ax2+bx+c)
we are given 0∫1f′(x)dx=0∫2f′(x)dx =0∫1f′(x)dx+0∫2f′(x)dx ⇒1∫2f′(x)dx=0 ⇒∣f(x)∣12=0 ⇒f(2)−f(1)=0 ⇒f(1)=f(2)
Since f′(x) exists, ∴f(x) satisfies all the conditions of Rolle’s Thm. in [1,2].
Hence ∃s at least one real value of x say α, such that f′(α)=0
i.e., (1+cos8α)(aα2+ba+c)=0
But 1+cos8α=0. ∴aα2+ba+c=0
Thus ax2+bx+c=0 has at least one root in (1,2).