Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let a, b, c be in AP. If 0 < a,b,c < 1 ,x=∑ limitsn=0∞ an, y=∑ limitsn=0∞ bn and z=∑ limitsn=0∞ cn, then
Q. Let
a
,
b
,
c
be in
A
P
. If
0
<
a
,
b
,
c
<
1
,
x
=
n
=
0
∑
∞
a
n
,
y
=
n
=
0
∑
∞
b
n
and
z
=
n
=
0
∑
∞
c
n
,
then
3526
230
KEAM
KEAM 2008
Sequences and Series
Report Error
A
2
y
=
x
+
z
B
2
x
=
y
+
z
C
2
z
=
x
+
y
D
2
x
z
=
x
y
+
yz
E
z
=
x
+
y
2
x
y
Solution:
Since,
x
=
n
=
0
∑
∞
a
n
∴
x
=
1
+
a
+
a
2
+
....∞
⇒
x
=
1
−
a
1
⇒
(
1
−
a
)
x
=
1
⇒
a
=
x
x
−
1
Similarly,
b
=
y
y
−
1
and
c
=
z
z
−
1
Since, a, b and c are in AP.
∴
b
=
2
a
+
c
⇒
y
y
−
1
=
2
x
x
−
1
+
z
z
−
1
⇒
2
x
z
(
y
−
1
)
=
y
[
z
(
x
−
1
)
+
x
(
z
−
1
)]
⇒
2
x
yz
−
2
x
z
=
x
yz
−
yz
+
x
yz
−
x
y
⇒
−
2
x
z
=
−
yz
−
x
y
⇒
2
x
z
=
x
y
+
yz