n(A)=10,n(B)=15,n(20),n(A∩B)=8,n(B∩C)=9
possible value of n (AUBUC) n(A∪B∪C)=n(A)+n(B)+n(C)−n(A∩B)−n(B∩C)−n(A∩C)+n(A∩B∩C) =10+15+20−8−9−n(A∩C)+n(A∩B∩C) =28−n(A∩C)+n(A∩B∩C)
We see here, 28−n(A∩C)+n(A∩B∩C)⩾0 ⇒n(A∪B∪C)⩽28...(1)
We see, n(A∪B)=n(A)+n(B)−n(A∩B) =10+15−8 =17 n(B∪C)=n(B)+n(C)−n(B∩C) =15+20−9 =26
Obviously, n(A∪B∪C)⩾26 also, n(A∪B∪C)⩾17...(2) ∴ from (1) & (2) 26⩽n(A∪B∪C)⩽28