Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let a,b and c satisfy the system of equations a+2b+3c=6,4a+5b+6c=12 and 6a+9b=4 . If the roots of the equation (a + b + c)x2-abcx+(a- 1 + b- 1 + c- 1)=0 are α and β , then (1/α )+(1/β ) is equal to
Q. Let
a
,
b
and
c
satisfy the system of equations
a
+
2
b
+
3
c
=
6
,
4
a
+
5
b
+
6
c
=
12
and
6
a
+
9
b
=
4
. If the roots of the equation
(
a
+
b
+
c
)
x
2
−
ab
c
x
+
(
a
−
1
+
b
−
1
+
c
−
1
)
=
0
are
α
and
β
, then
α
1
+
β
1
is equal to
113
143
NTA Abhyas
NTA Abhyas 2022
Report Error
A
243
B
100
C
12
243
D
243
100
Solution:
Using cramer’s rule
Δ
=
∣
∣
1
4
6
2
5
9
3
6
0
∣
∣
=
1
(
−
54
)
−
2
(
−
36
)
+
3
(
6
)
=
−
54
+
72
+
18
=
36
(
Δ
)
1
=
∣
∣
6
12
4
2
5
9
3
6
0
∣
∣
=
6
(
−
54
)
−
2
(
−
24
)
+
3
(
88
)
=
−
324
+
48
+
264
=
−
12
(
Δ
)
2
=
∣
∣
1
4
6
6
12
4
3
6
0
∣
∣
=
1
(
−
24
)
−
6
(
−
36
)
+
3
(
−
56
)
=
−
24
+
216
−
168
=
24
(
Δ
)
3
=
∣
∣
1
4
6
2
5
9
6
12
4
∣
∣
=
1
(
−
88
)
−
2
(
−
56
)
+
6
(
6
)
=
−
88
+
112
+
36
=
60
⇒
a
=
Δ
Δ
1
=
−
3
1
,
b
=
Δ
Δ
2
=
3
2
,
c
=
Δ
Δ
3
=
3
5
⇒
equation is
2
x
2
+
27
10
x
−
10
9
=
0
⇒
540
x
2
+
100
x
−
243
=
0
α
+
β
=
−
27
5
,
α
β
=
−
20
9
α
1
+
β
1
=
α
β
α
+
β
=
−
9/20
−
5/27
=
243
100