Q.
Let a,b and c be three non-zero vectors such that no two of them are collinear and (a×b)×c=31∣b∣∣c∣a. If θ is the angle between vectors b and c , then a
value of sin θ is
Given, (a×b)×c=31∣b∣∣c∣a. ⇒−c×(a×b)=31∣b∣∣c∣a ⇒−(c.b).a+(c.a)b=31∣b∣∣c∣a ⇒[31∣b∣∣c∣+(c.b)]a=(c.a)b
Since, a and b are not collinear. ∴c.b+31∣b∣∣c∣=0 and c.a=0 ⇒∣b∣∣c∣cosθ+31∣b∣∣c∣=0 ⇒∣b∣∣c∣(cosθ+31)=0 ⇒cosθ+31=0[∵∣b∣=0,∣c∣=0] ⇒cosθ=−31⇒sinθ=38=322