Q.
Let a,b and c be positive constants. The value of ' a ' in terms of ' c ' if the value of integral 0∫1(acxb+1+a3bx3b+5)dx is independent of b, equals
I=0∫1(acxb+1+a3bx3b+5)dx=[ac⋅b+2xb+2+3b+6a3bx3b+6]01=b+2ac+3(b+2)a3b hence, I(b)=3(b+2)1[3ac+a3b]…(1)⇒3(b+2)a3(b+a23c)
If this is independent of b, then a23c=2