Q.
Let A and B be two distinct points denoting the complex numbers α and β respectively. A complex number z lies between A and B where z=α,z=β. Which of the following relation(s) hold good?
418
121
Complex Numbers and Quadratic Equations
Report Error
Solution:
AP+PB=AB ∣z−α∣+∣β−z∣=∣β−α∣⇒ A True <br/> Now z=α+t(β−α) =(1−t)α+tβ where t∈(0,1)⇒B is True again β−αz−α is real ⇒β−αz−α=βˉ−αˉz−αˉ ⇒∣∣z−αβ−αzˉ−αˉβˉ−αˉ∣∣=0 also ∣∣zαβzˉαˉβˉ111∣∣=0 if and only if ∣∣z−ααβ−αzˉ−αˉαˉβˉ−αˉ010∣∣=0 ⇒∣∣z−α)β−αˉzˉ−αˉβˉ−αˉ∣∣=0