Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Let $A$ and $B$ be two distinct points denoting the complex numbers $\alpha$ and $\beta$ respectively. A complex number $z$ lies between $A$ and $B$ where $z \neq \alpha, z \neq \beta$. Which of the following relation(s) hold good?

Complex Numbers and Quadratic Equations

Solution:

image
$AP + PB = AB$
$| z -\alpha|+|\beta- z |=|\beta-\alpha| \Rightarrow \text { A True } \\
\text { Now } z =\alpha+ t (\beta-\alpha) $
$=(1- t ) \alpha+ t \beta \text { where } t \in(0,1) \Rightarrow B \text { is True } $
$\text { again } \frac{ z -\alpha}{\beta-\alpha} \text { is real } \Rightarrow \frac{ z -\alpha}{\beta-\alpha}=\frac{\overline{ z }-\bar{\alpha}}{\bar{\beta}-\bar{\alpha}}$
$\Rightarrow\begin{vmatrix}z-\alpha & \bar{z}-\bar{\alpha} \\ \beta-\alpha & \bar{\beta}-\bar{\alpha}\end{vmatrix}=0$
$ \text { also }\begin{vmatrix}z & \bar{z} & 1 \\ \alpha & \bar{\alpha} & 1 \\ \beta & \bar{\beta} & 1\end{vmatrix}=0 \text { if and only if }\begin{vmatrix}z-\alpha & \bar{z}-\bar{\alpha} & 0 \\ \alpha & \bar{\alpha} & 1 \\ \beta-\alpha & \bar{\beta}-\bar{\alpha} & 0\end{vmatrix}=0 $
$\Rightarrow \begin{vmatrix}z-\alpha) & \bar{z}-\bar{\alpha} \\ \beta-\bar{\alpha} & \bar{\beta}-\bar{\alpha}\end{vmatrix}=0$