Given, sina+sinb=21...(i) cosa+cosb=26...(ii)
On squaring both sides in Eq. (i), we get sin2a+sin2b+2sinasinb=21...(iii)
And on squaring both sides in Eq. (ii), we get cos2a+cos2b+2cosacosb=46=23...(iv)
Now, by adding Eqs. (iii) and (iv), we get (sin2a+sin2b+2sinasinb) +(cos2a+cos2b+2cosacosb)=21+23 ⇒(sin2a+cos2a)+(sin2b+cos2b) +2(sinasinb+cosacosb)=24 ⇒1+1+2cos(a−b)=2 ∴cos(a−b)=0...(v)
On multiplying Eqs. (i) and (ii), we get (sina+sinb)(cosa+cosb)=21×26 ⇒sinacosa+sinacosb+sinbcosa+sinbcosb=226 ⇒(sinacosa+sinbcosb)+(sinacosb+cosasinb)=23 ⇒21(sin2a+sin2b)+sin(a+b)=23 ⇒sin(a+b)cos(a−b)+sin(a+b)=23 ⇒0+sin(a+b)=23 [ From Eq. (v),cos(a−b)=0] ⇒sin(a+b)=23