Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let A =[ a ij ] be a square matrix of order 3 such that ai j=2j-i, for all i, j=1,2,3. Then, the matrix A 2+ A 3+ ldots+ A 10 is equal to :
Q. Let
A
=
[
a
ij
]
be a square matrix of order
3
such that
a
ij
=
2
j
−
i
, for all i,
j
=
1
,
2
,
3
. Then, the matrix
A
2
+
A
3
+
…
+
A
10
is equal to :
2201
153
JEE Main
JEE Main 2022
Matrices
Report Error
A
(
2
3
10
−
3
)
A
51%
B
(
2
3
10
−
1
)
A
27%
C
(
2
3
10
+
1
)
A
8%
D
(
2
3
10
+
3
)
A
14%
Solution:
A
=
⎝
⎛
1
1/2
1/
2
2
2
1
1/2
2
2
2
1
⎠
⎞
A
2
=
3
A
A
3
=
3
2
A
A
2
+
A
3
+
…
.
A
10
=
3
A
+
3
2
A
+
…
+
3
9
A
=
3
−
1
3
(
3
9
−
1
)
A
=
2
3
10
−
3
A