Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let A=[aij] and B=[bij] be two 3 x 3 real matrices such that bij=(3)(i+j-2)aji, where i,j=1, 2, 3. If the determinant of B is 81, then the determinant of A is :
Q. Let
A
=
[
a
ij
]
and
B
=
[
b
ij
]
be two
3
x
3
real matrices such that
b
ij
=
(
3
)
(
i
+
j
−
2
)
a
ji
,
where
i
,
j
=
1
,
2
,
3.
If the determinant of
B
is
81
, then the determinant of
A
is :
7960
241
JEE Main
JEE Main 2020
Determinants
Report Error
A
1/9
40%
B
1/81
60%
C
1/3
0%
D
3
0%
Solution:
b
ij
=
(
3
)
(
i
+
j
−
2
)
a
ij
B
=
⎣
⎡
a
11
3
a
21
3
2
a
31
3
a
12
3
a
22
3
2
a
32
3
2
a
13
3
a
23
3
2
a
33
⎦
⎤
⇒
∣
B
∣
=
3
×
3
2
∣
∣
a
11
3
a
21
3
2
a
31
a
12
3
a
22
3
2
a
32
a
13
3
a
23
3
2
a
33
∣
∣
=
3
6
∣
A
∣
⇒
∣
A
∣
=
27
×
27
81
=
9
1