Q.
Let A(a,0),B(b,2b+1) and C(0,b),b=0,∣b∣=1, be points such that the area of triangle ABC is 1sq. unit, then the sum of all possible values of a is :
∣∣21∣∣ab002b+1b111∣∣∣∣=1 ⇒∣∣∣∣ab002b+1b111∣∣∣∣=±2 ⇒a(2b+1−b)−0+1(b2−0)=±2 ⇒a=b+1±2−b2 ∴a=b+12−b2 and a=b+1−2−b2
sum of possible values of 'a' is =a+1−2b2