Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let A(a, 0) , B(0, b) and C (1, 1) be three points. If (1/a)+(1/b)=1 , then the three points are
Q. Let
A
(
a
,
0
)
,
B
(
0
,
b
)
and
C
(
1
,
1
)
be three points. If
a
1
+
b
1
=
1
, then the three points are
2580
188
J & K CET
J & K CET 2016
Determinants
Report Error
A
vertices of an equilateral triangle
10%
B
vertices of a right angled triangle
12%
C
collinear
65%
D
vertices of an isosceles triangle
14%
Solution:
Area of
Δ
A
BC
=
∣
∣
a
0
1
0
b
1
1
1
1
∣
∣
=
a
(
b
−
1
)
−
0
+
1
(
0
−
b
)
=
ab
−
a
−
b
=
0
[
∵
a
1
+
b
1
=
1
⇒
b
+
a
=
ab
]
∴
Points
A
,
B
and
C
are collinear.