Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let A(3, 0, -1), B (2, 10, 6) and C(1, 2, 1) be the vertices of a triangle and M be the midpoint of AC. If G divides BM in the ratio, 2: 1, then cos ( angleGOA) (O being the origin) is equal to :
Q. Let
A
(
3
,
0
,
−
1
)
,
B
(
2
,
10
,
6
)
and
C
(
1
,
2
,
1
)
be the vertices of a triangle and
M
be the midpoint of AC. If
G
divides
BM
in the ratio,
2
:
1
, then cos (
∠
GOA) (O being the origin) is equal to :
2516
177
JEE Main
JEE Main 2019
Three Dimensional Geometry
Report Error
A
30
1
12%
B
10
1
38%
C
15
1
25%
D
2
15
1
25%
Solution:
G
is the centroid of
Δ
A
BC
G
≡
(
2
,
4
,
2
)
OG
=
2
i
^
+
4
j
^
+
2
k
^
O
A
=
3
i
^
−
k
^
cos
(
∠
GO
A
)
=
∣
OG
∣∣
O
A
∣
v
ec
OG
.
O
A
=
15
1