Q.
Let A(2secθ,3tanθ) and B(2secϕ,3tanϕ) where θ+ϕ=2π, be two points on the hyperbola 4x2−9y2=1. If (α,β) is the point of intersection of normals to the hyperbola at A and B, then β is equal to
The normal at point A(2secθ,3tanθ) is 2xcosθ+3ycotθ=4+9 ⇒2xcosθ+3ycotθ=13...(i)
And the normal at point B(2secϕ,3tanϕ) is 2xcosϕ+3ycotϕ=4+9 ⇒2xcosϕ+3ycotϕ=13...(ii)
Multiplying Eq. (i) by cosϕ and Eq. (ii) by cosθ, then subtracting Eq. (ii) from Eq. (i), we get 3ycotθcosϕ−3ycotϕcosθ=13(cosϕ−cosθ) ⇒3y{cot(2π−ϕ)cosϕ−cotϕcos(2π−ϕ)} =13{cosϕ−cos(2π−ϕ)} ⇒3y{tanϕcosϕ−cotϕsinϕ}=13(cosϕ−sinϕ) ⇒3y(sinϕ−cosϕ)=13(cosϕ−sinϕ) ⇒3y=sinϕ−cosϕ−13(sinϕ−cosϕ) ∴y=−313
Hence, the value of β is −313.