Q. Let $A(2 \,\sec \,\theta,\, 3 \,\tan \,\theta)$ and $B(2 \,\sec \,\phi, \,3 \,\tan \,\phi)$ where $\theta+\phi=\frac{\pi}{2}$, be two points on the hyperbola $\frac{x^{2}}{4}-\frac{y^{2}}{9}=1 .$ If $(\alpha, \beta)$ is the point of intersection of normals to the hyperbola at $A$ and $B$, then $\beta$ is equal to
TS EAMCET 2016
Solution: