Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let A = [2&b&1 b&b2+1&b 1&b&2] where b > 0. Then the minimum value of (det (A)/b) is :
Q. Let
A
=
⎣
⎡
2
b
1
b
b
2
+
1
b
1
b
2
⎦
⎤
where
b
>
0
. Then the minimum value of
b
d
e
t
(
A
)
is :
3505
202
JEE Main
JEE Main 2019
Determinants
Report Error
A
3
23%
B
−
3
8%
C
−
2
3
12%
D
2
3
58%
Solution:
A
=
⎣
⎡
2
b
1
b
b
2
+
1
b
1
b
2
⎦
⎤
(
b
>
0
)
∣
A
∣
=
2
(
2
b
2
+
2
−
b
2
)
−
b
(
2
b
−
b
)
+
1
(
b
2
−
b
2
−
1
)
∣
A
∣
=
2
(
b
2
+
2
)
−
b
2
−
1
∣
A
∣
=
b
2
+
3
b
∣
A
∣
=
b
+
b
3
⇒
2
b
+
b
3
≥
3
b
+
b
3
≥
2
3