Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let A=[2&b&1 b&b2 +1&b 1&b&2] where b>0 If the minimum value of (det(A)/b) is q√r, then (r/q)=
Q. Let
A
=
⎣
⎡
2
b
1
b
b
2
+
1
b
1
b
2
⎦
⎤
where
b
>
0
If the minimum value of
b
d
e
t
(
A
)
is
q
r
, then
q
r
=
3844
224
Determinants
Report Error
Answer:
1.5
Solution:
∣
A
∣
=
∣
∣
2
b
1
b
b
2
+
1
b
1
b
2
∣
∣
=
2
(
2
b
2
+
2
−
b
2
)
−
b
(
2
b
−
b
)
+
1
(
b
2
−
b
2
−
1
)
=
2
b
2
+
4
−
b
2
−
1
=
b
2
+
3
b
∣
A
∣
=
b
+
b
3
∵
2
b
+
b
3
≥
(
b
b
3
)
2
1
⇒
b
+
b
3
≥
2
3
∴
b
∣
A
∣
≥
2
3
Minimum value of
b
∣
A
∣
is
2
3
=
2
×
1.73
=
3.46