Θa2,a(b−3),4b are in A.P. a2+4b=2a(b−3) ⇒a2−2a(b−3)+4b=0 a=22(b−3)±4(b−3)2−4⋅4b=b−3±b2−10b+9=b−3±(b−1)(b−9)
Since, a is an integer and b∈[5,15] ∴ Possible values of b are 9&10.
for b=9,a=6 and A.P. is 36,36,36 (rejected)
for b=10,a=10,4 A.P. is 16,28,40,………(a=4) 100,70,40,……(a=10)( rejected ) ab=410=25