Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let a2, a3 ∈ R be such that |a2-a3|=6. Let f(x)=| 1 a3 a2 1 a3 2 a2-x 1 2 a3-x a2 |, x ∈ R The maximum value of f(x) is
Q. Let
a
2
,
a
3
∈
R
be such that
∣
a
2
−
a
3
∣
=
6
.
Let
f
(
x
)
=
∣
∣
1
1
1
a
3
a
3
2
a
3
−
x
a
2
2
a
2
−
x
a
2
∣
∣
,
x
∈
R
The maximum value of
f
(
x
)
is
107
117
Determinants
Report Error
A
6
B
9
C
12
D
36
Solution:
Using
R
2
→
R
2
−
R
1
,
R
3
→
R
3
−
R
1
, we get
f
(
x
)
=
∣
∣
1
0
0
a
3
0
a
3
−
x
a
2
a
2
−
x
0
∣
∣
=
−
(
a
2
−
x
)
(
a
3
−
x
)
=
−
[
x
2
−
(
a
2
+
a
3
)
x
+
a
2
a
3
]
=
4
1
(
a
2
−
a
3
)
2
−
(
x
−
2
a
2
+
a
3
)
2
≤
9
f
(
x
)
attains maximum value 9 when
x
=
2
1
(
a
2
+
a
3
)