Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let a2, a3 ∈ R be such that |a2-a3|=6 and f(x)=|1 a3 a2 1 a3 2 a2-x 1 2 a3-x a2|, x ∈ R. Then the greatest value of f(x) is
Q. Let
a
2
,
a
3
∈
R
be such that
∣
a
2
−
a
3
∣
=
6
and
f
(
x
)
=
∣
∣
1
1
1
a
3
a
3
2
a
3
−
x
a
2
2
a
2
−
x
a
2
∣
∣
,
x
∈
R
. Then the greatest value of
f
(
x
)
is
231
91
Determinants
Report Error
A
6
B
9
C
12
D
36
Solution:
R
2
→
R
2
−
R
1
and
R
3
→
R
3
−
R
1
f
(
x
)
=
−
(
a
2
−
x
)
(
a
3
−
x
)
=
−
x
2
+
(
a
2
+
a
3
)
x
−
a
2
a
3
∣
a
2
−
a
3
∣
=
∣
a
∣
D
=
6
⇒
D
=
6
Max.
=
4
a
−
D
=
4
36
=
9