Q.
Let A(2,−3) and B(−2,3) be vertices of a triangle ABC. If the centroid of this triangle moves on the line 2x+3y=1. If the locus of the vertex C is the line ax+by=c, then ab+c is
Let the vertex C be (h,k), then the
centroid ot ΔABC is (32−2+h,3−3+1+k)
or (3h,3−2+k).It lies on 2x+3y=1 ⇒32h−2+k=1 ⇒2h+3k=9 ⇒ Locus of C is 2x+3y=9
But, locus is the line ax+by=c
Then, a=2,b=3,c=9
Hence, aa+b=23+9=212=6