Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let A= 2,3,4,5, ldots,, 30 and '≃' be an equivalence relation on A × A, defined by ( a , b ) ≃ ( c , d ), if and only if ad = bc. Then the number of ordered pairs which satisfy this equivalence relation with ordered pair (4,3) is equal to :
Q. Let
A
=
{
2
,
3
,
4
,
5
,
…
,,
30
}
and '
≃
' be an equivalence relation on
A
×
A
, defined by
(
a
,
b
)
≃
(
c
,
d
)
, if and only if
a
d
=
b
c
. Then the number of ordered pairs which satisfy this equivalence relation with ordered pair
(
4
,
3
)
is equal to :
4298
186
JEE Main
JEE Main 2021
Relations and Functions - Part 2
Report Error
A
5
0%
B
6
100%
C
8
0%
D
7
0%
Solution:
A
=
{
2
,
3
,
4
,
5
,
…
,,
30
}
(
a
,
b
)
≃
(
c
,
d
)
⇒
a
d
=
b
c
(
4
,
3
)
≃
(
c
,
d
)
⇒
4
d
=
3
c
⇒
3
4
=
d
c
d
c
=
3
4
&
c
,
d
∈
{
2
,
3
,
……
,
30
}
(
c
,
d
)
=
{(
4
,
3
)
,
(
8
,
6
)
,
(
12
,
9
)
,
(
16
,
12
)
,
(
20
,,
15
)
,
(
24
,
18
)
,
(
28
,
21
)}
No. of ordered pair
=
7