(a−1)(x2+3x+1)2−(a+1)[(x2+1)2−(x3)2)≤0 or (a−1)(x2+3x+1)2−(a+1)[x2+x3+1) (x2−x3+1)≤0 (x2−x3+1)[(a−1)(x2+3x+1)−(a+1)(x2−x3+1)]≤0∀x∈R ⇒−2(x2+1)+2a3x≤0 ⇒x2−a3x+1≥0∀x∈R ⇒3a2−4≤0(D≤0) ⇒a∈[−32,32] ⇒ Number of possible integral value of a is {−1,0,1} ⇒3
and sum of all integral values of a is −1+0+1=0