Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let A=[ 1 tan x -tanx 1 ] and B=ATA- 2 . If f(x)=det(a d j B) , then number of solution(s) of the equation 10f(x)-x=0 is (are)
Q. Let
A
=
[
1
−
t
an
x
t
an
x
1
]
and
B
=
A
T
A
−
2
. If
f
(
x
)
=
d
e
t
(
a
d
j
B
)
, then number of solution(s) of the equation
10
f
(
x
)
−
x
=
0
is (are)
163
163
NTA Abhyas
NTA Abhyas 2022
Report Error
Answer:
7
Solution:
f
(
x
)
=
det
(
adj
(
B
))
=
∣
adj
(
B
)
∣
=
∣
B
∣
=
∣
∣
A
T
∥
A
−
2
∣
∣
=
∣
A
∣
∣
A
1
=
∣
A
∣
1
=
se
c
2
x
1
=
co
s
2
x
10
co
s
2
x
−
x
=
0