n=1∑20anan+11=n=1∑20an(an+d)1 =d1n=1∑20(an1−an+d1) ⇒d1(a11−a211)=94 (Given) ⇒d1(a1a21a21−a1)=94 ⇒d1(a1a2a1+20d−a1)=94 ⇒a1a2=45 ...(1)
Now sum of first 21 terms =221(2a1+20d)=189 ⇒a1+10d=9 ...(2)
For equation (1) & (2) we get a1=3&d=53 a1=15&d=−53
So, a6⋅a16=(a1+5d)(a1+15d) ⇒a6a16=72