Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let a1, a2, a3, ldots ldots ldots, an be fixed real numbers and define a function f(x)=(x-a1)(x-a2) ldots ldots(x-an), then
Q. Let
a
1
,
a
2
,
a
3
,
………
,
a
n
be fixed real numbers and define a function
f
(
x
)
=
(
x
−
a
1
)
(
x
−
a
2
)
……
(
x
−
a
n
)
, then
77
171
Limits and Derivatives
Report Error
A
x
→
a
1
lim
f
(
x
)
=
0
B
x
→
a
lim
f
(
x
)
=
(
a
−
a
1
)
(
a
−
a
2
)
……
..
(
a
−
a
n
)
, for some
a
=
a
1
,
C
Both (a) and (b) are true
D
Either (a) or (b) is true
Solution:
Given,
f
(
x
)
=
(
x
−
a
1
)
(
x
−
a
2
)
…
.
(
x
−
a
n
)
∴
x
→
a
1
lim
f
(
x
)
=
x
→
a
1
lim
(
x
−
a
1
)
(
x
−
a
2
)
…
(
x
−
a
n
)
=
(
a
1
−
a
1
)
(
a
1
−
a
2
)
…
.
(
a
1
−
a
n
)
=
0
×
(
a
1
−
a
2
)
…
(
a
1
−
a
n
)
=
0
Again,
x
→
a
lim
f
(
x
)
=
x
→
a
lim
(
x
−
a
1
)
(
x
−
a
2
)
…
(
x
−
a
n
)
=
(
a
−
a
1
)
(
a
−
a
2
)
…
(
a
−
a
n
)