Q.
Let a1,a2,a3……an be an increasing A.P. of positive integers such that a3=10, then if the maximum value of S=n=1∑4aan is M. Find the sum of digits of (10M).
a1=10−2d≥1⇒d≤29d>0 S=aa1+aa2+aa3+aa4 =a1+(a1−1)d+a1+(a2−1)d+a1+(a3−1)d+a1+(a4−1)d =4a1+d(a1+a2+a3+a4−4) =4a1+d(4a1+6d−4) =4a1(1+d)+6d2−4d=4(10−2d)(1+d)+6d2−4d =40−28d−2d2 =40−2(d2−14d+48)+98 =138−2(d−7)2 for maximum sum d=4
for maximum sum d=4 M=120 ∴[10M]=12⇒ sum of digits =3