Q. Let $a_1, a_2, a_3 \ldots \ldots a_n$ be an increasing A.P. of positive integers such that $a_3=10$, then if the maximum value of $S=\displaystyle\sum_{n=1}^4 a_{a_n}$ is $M$. Find the sum of digits of $\left(\frac{M}{10}\right)$.
Sequences and Series
Solution: