Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let a1, a2, a3, ldots. be the terms of an A.P. . If (a1+a2+ ldots+ap/a1+a2+ ldots .+aq)=(p2/q2), p ≠ q, then (a6/a21) equals to
Q. Let
a
1
,
a
2
,
a
3
,
…
. be the terms of an A.P. . If
a
1
+
a
2
+
…
.
+
a
q
a
1
+
a
2
+
…
+
a
p
=
q
2
p
2
,
p
=
q
, then
a
21
a
6
equals to
1957
156
Sequences and Series
Report Error
A
2
7
B
7
2
C
41
11
D
11
41
Solution:
Given,
2
q
[
2
a
1
+
(
q
−
1
)
d
]
2
p
[
2
a
1
+
(
p
−
1
)
d
]
=
q
2
p
2
⇒
(
2
a
1
−
d
)
+
q
d
(
2
a
1
−
d
)
+
p
d
=
q
p
⇒
(
2
a
1
−
d
)
(
p
−
q
)
=
0
⇒
a
1
=
2
d
(
∵
p
=
q
)
Now
a
21
a
6
=
a
1
+
20
d
a
1
+
5
d
=
2
d
+
20
d
2
d
+
5
d
=
41
11