Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let a1, a2, a3, ldots . . be in harmonic progression with a1=5 and a20=25 . The least positive integer n for which an<0
Q. Let
a
1
,
a
2
,
a
3
,
…
..
be in harmonic progression with
a
1
=
5
and
a
20
=
25.
The least positive integer
n
for which
a
n
<
0
2595
205
AIEEE
AIEEE 2012
Report Error
A
22
B
23
C
24
D
25
Solution:
a
1
,
a
2
,
a
3
,
are in
H
.
P
.
⇒
a
1
1
,
a
2
1
,
a
3
1
,
…
are in A.P.
⇒
a
n
1
=
a
1
1
+
(
n
−
1
)
d
<
0
,
where
19
25
1
−
25
5
=
d
=
(
9
×
25
−
4
)
⇒
5
1
+
(
n
−
1
)
(
19
×
25
−
4
)
<
0
19
×
5
4
(
n
−
1
)
>
1
n
−
1
>
4
19
×
5
n
>
4
19
×
5
+
1
⇒
n
≥
25.