Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let a1, a2, a3, ldots be in A.P. and g1, g2, g3, ldots be in G.P. If a1=g1=3 and a8=g4=24, then find (g7/a4).
Q. Let
a
1
,
a
2
,
a
3
,
…
be in A.P. and
g
1
,
g
2
,
g
3
,
…
be in G.P.
If
a
1
=
g
1
=
3
and
a
8
=
g
4
=
24
, then find
a
4
g
7
.
378
155
Sequences and Series
Report Error
Answer:
16
Solution:
For A.P.,
a
1
=
a
=
3
a
8
=
24
⇒
a
+
7
d
=
24
...
(
i
)
Substituting
a
=
3
in (i),
we get
d
=
3
a
4
=
a
+
3
d
=
3
+
3
(
3
)
=
12
For G.P.,
g
1
=
a
=
3
g
4
=
24
⇒
a
r
3
=
24
⇒
3
r
3
=
24
⇒
r
3
=
8
⇒
r
=
2
g
7
=
a
r
6
=
3
(
2
)
6
=
192
⇒
a
4
g
7
=
12
192
=
16