Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let a1, a2, a3, ldots be an arithmetic progression with a1=7 and common difference 8 . Let T1, T2, T3, ldots be such that T1=3 and Tn+1-Tn=an for n ≥ 1. Then, which of the following is/are TRUE ?
Q. Let
a
1
,
a
2
,
a
3
,
…
be an arithmetic progression with
a
1
=
7
and common difference 8 . Let
T
1
,
T
2
,
T
3
,
…
be such that
T
1
=
3
and
T
n
+
1
−
T
n
=
a
n
for
n
≥
1
. Then, which of the following is/are TRUE ?
2930
140
JEE Advanced
JEE Advanced 2022
Report Error
A
T
20
=
1604
19%
B
k
=
1
∑
20
T
k
=
10510
42%
C
T
30
=
3454
161%
D
k
=
1
∑
30
T
k
=
35610
26%
Solution:
a
1
=
7
,
d
=
8
T
n
+
1
−
T
n
=
a
n
∀
n
≥
1
S
n
=
T
1
+
T
2
+
T
3
+
…
+
T
n
−
1
+
T
n
S
n
=
T
1
+
T
2
+
T
3
+
…
+
T
n
−
1
+
T
n
on subtraction
T
n
=
T
1
+
a
1
+
a
2
+
…
+
a
n
−
1
T
n
=
3
+
(
n
−
1
)
(
4
n
−
1
)
T
n
=
4
n
2
−
5
n
+
4
∑
k
=
1
n
T
k
=
4
∑
n
2
−
5
∑
n
+
4
n
T
20
=
1504
T
30
=
3454
k
=
1
∑
30
T
k
=
35615
k
=
1
∑
20
T
k
=
10510