Given, a1+a2+a3+a4+…+a21=693 ⇒221[2a1+20d]=693,
where d is the common difference of arithmetic progression ⇒21[a1+10d]=693, so (a1+10d)=33 ...(1)
Now, a1+a3+a5+…+a19+a21=2n[2a1+(n1−1)2d] =211[2a1+10⋅2d] =11[a1+10d]=11×33=363 [using equation (1)]