We have, a1,a2,a3,a4…,an are in AP.
We know that, if a1,a2,a3…,an in AP, then a1+an=a2+an−1 =a3+an−2=⋯=ar+an−(r−1)
Now, a1an1+a2an−11+a3an−31+…+ana11 =an+a11[a1anan+a1+a2an−1an+a1+…+ana1an+a1] =an+a11[a1anan+a1+a2an−1an−1+a2+…+ana1an+a1] =an+a11[an1+a11+a21+an−11+…+an1+a11] =an+a11[a12+a22+a32+…+an2] =an+a12[a11+a21+a31+…+an1] ∴k=2