Q.
Let a1,a2,a3,...,a11 be real numbers satisfying a1=15 27−2a2>0 and ak=2ak−1−ak−2 for k = 3, 4,...,11.
If 11a12+a22+...+a112=90, then the value of 11a1+a2+...+a11 is ......
2984
158
IIT JEEIIT JEE 2010Sequences and Series
Report Error
Answer: 0
Solution:
ak=2ak−1−ak−2⇒a1,a2,...,a11 are in AP. ∴11a12+a22+...+a112=1111a2+35×11d2+10ad=90 ⇒225+35d2+150d=90 ⇒35d2+150d+135=0⇒d=−3,−79
Given, a2<227 ∴d=−3 and d=−79 ⇒11a1+a2+...+a11=211[30−10×3]=0