Q.
Let $a_1, a_2, a_3,...,a_{11}$ be real numbers satisfying $ a_1 = 15 $
$ 27 - 2a_2 > 0 $ and $a_k = 2a_{k-1} - a_{k-2}$ for k = 3, 4,...,11.
If $\, \, \, \frac{a^2_1+ a^2_2 +...+ a^2_{11}}{11}=90,$ then the value of
$\frac{a_1+ a_2 +...+ a_{11}}{11}$ is ......
IIT JEEIIT JEE 2010Sequences and Series
Solution: