Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let a1 , a2, ..., a100 be non-zero real numbers such that a1 + a2 + ...+ a100 = 0 Then,
Q. Let
a
1
,
a
2
,
...
,
a
100
be non-zero real numbers such that
a
1
+
a
2
+
...
+
a
100
=
0
Then,
1771
233
KVPY
KVPY 2016
Report Error
A
∑
i
=
1
100
a
i
2
a
i
>
0
and
∑
i
=
1
100
a
i
2
−
a
i
<
0
B
∑
i
=
1
100
a
i
2
a
i
≥
0
and
∑
i
=
1
100
a
i
2
−
a
i
≥
0
C
∑
i
=
1
100
a
i
2
a
i
≤
0
and
∑
i
=
1
100
a
i
2
−
a
i
≤
0
D
The sign of
∑
i
=
1
100
a
i
2
a
i
or
∑
i
=
1
100
a
i
2
−
a
i
depends on the choice of
a
i
s
Solution:
We have,
a
1
,
a
2
,
a
3
,
...
,
a
100
be non-zero real number and
a
1
+
a
2
+
a
3
+
...
+
a
100
=
0
a
i
⋅
2
a
i
>
a
i
and
a
i
⋅
2
−
a
i
<
a
i
i
=
1
∑
100
a
1
⋅
2
a
i
>
i
=
1
∑
100
a
i
and
i
=
1
∑
100
a
1
⋅
2
−
a
i
<
i
=
1
∑
100
a
i
⇒
i
=
1
∑
100
a
1
⋅
2
a
i
>
0
and
i
=
1
∑
100
a
1
⋅
2
−
a
i
<
0