Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Let $a_1 , a_2, ..., a_{100}$ be non-zero real numbers such that $a_1 + a_2 + ...+ a_{100} = 0$
Then,

KVPYKVPY 2016

Solution:

We have, $a_1, a_2, a_3,..., a_{100}$ be non-zero real number and

$a_1 + a_2 + a_3 + ... + a_{100} = 0$

$a_i \cdot 2^{a_i} > a_i $ and $a_i \cdot 2^{-a_i} < a_i$

$\displaystyle\sum_{i = 1}^{100} a_{1}\cdot 2^{a_{i}} > \displaystyle\sum_{i=1}^{100} a_{i} $ and $ \displaystyle\sum _{i=1}^{100} a_{1}\cdot2^{-a_{i}} < \displaystyle\sum _{i=1}^{100} a_{i} $

$ \Rightarrow \displaystyle\sum _{i=1}^{100} a_{1} \cdot 2^{a_{i}} > 0$ and $\displaystyle\sum _{i=1}^{100} a_{1} \cdot 2^{-a_{i}} <0$